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Noncircularity
David J. Edelblute

Abstract| This paper examines the second order non-
circular properties of Fourier coe�cients which are esti-
mated from a time stationary sampled sequence. If X(m) =

(1=
p
M)
P
M�1

n=0
x(n) exp(i2�mn=M), where x(n) is a time sta-

tionary data sequence, then the noncircular character of
X(m) is shown by E[X2(m)] = 2A(m) csc(2�m=M)exp(i2�m=M)
where A(m) is the sine transform of the autocorrelation func-
tion of x(n). The signal processing implications of this are

not yet clear, but it appears that it could degrade the per-
formance of a detector by as much as 1.5 dB.
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I. Introduction

T
HE real and imaginary parts of a complex random
variable, X = XR + iXI , are often assumed to be

zero mean, equal variance, and uncorrelated. In this paper,
we shall ignore considerations of nonzero means. In most
cases, this will involve no loss of generality. The critical
assumption is E[X2

R
]� E[X2

I
] = E[XRXI ] = 0. An equiv-

alent statement is E[X2] = 0. This condition is referred to
as second order circularity. Neeser and Massey [1] describe
such variables as \proper." In the Gaussian case this leads
to the conclusion that the probability density function de-
pends only on the magnitude of the variable. Picinbono
[2] has recently clari�ed some of the issues associated with
circularity and described other types of circularity. This
paper will con�ne itself to second order issues. Noncircu-
lar random variables have received less attention but may
occur more often. They represent the general case and de-
serve study.
The variables of interest in this paper will be the coe�-

cients which result from discrete Fourier transforms of time
stationary data. Such coe�cients often arise in the study
of time series data for spectrum analysis and sensor array
processing. They are often assumed to approximate the
coe�cients of the spectral representation and therefore to
be circular. Since circularity substantially simpli�es many
processors it is disappointing to �nd that these coe�cients
are not circular.

II. The Circular Anomaly

To make the problem more speci�c, let x(n) represent
a time stationary data sequence with an autocorrelation
function

R(k) = E[x(n+ k)x(n)] (1)

We shall use M sequential samples to form a Fourier trans-
form coe�cient in the usual manner. The real and imagi-
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nary parts of the estimate are

XR(m) =
1

p
fsM

M�1X
n=0

x(n) cos

�
2�mn

M

�
(2)

XI (m) = �
1

p
fsM

M�1X
n=0

x(n) sin

�
2�mn

M

�
(3)

Let us �rst examine the correlation between XR(m) and
XI(m).

E[XR(m)XI (m)] = (4)

�1
fsM

M�1X
n=0

M�1X
k=0

E[x(n)x(k)] cos

�
2�mn

M

�
sin

�
2�km

M

�

=
�1

2fsM

M�1X
n=0

M�1X
k=0

R(n� k) sin

�
2�(n+ k)m

M

�

+
�1

2fsM

M�1X
n=0

M�1X
k=0

R(n� k) sin

�
2�(k � n)m

M

�

From symmetry, the second term in the last expression will
sum to zero. The �rst term is

�1
2fsM

M�1X
n=0

M�1X
k=0

R(n� k) sin

�
2�(n+ k)m

M

�

=
�1
fsM

M�1X
n=1

M�1�nX
k=0

R(n) sin

�
2�(n + 2k)m

M

�

E[XR(m)XI (m)] =
�1
fsM

M�1X
n=1

R(n) sin

�
2�mn

M

�
(5)

To get the variance of XR(m),

E[X2
R(m)] =

1

fsM

M�1X
n=0

M�1X
k=0

E[x(n)x(k)] cos

�
2�mn

M

�
cos

�
2�km

M

�

(6)
while for XI(m)

E[X2
I (m)] =

1

fsM

M�1X
n=0

M�1X
k=0

E[x(n)x(k)] sin

�
2�mn

M

�
sin

�
2�km

M

�

(7)
Adding these two equations gives the spectral estimate

S(m) = E[X2
R(m)] +E[X2

I (m)] =

1

fsM

M�1X
n=0

M�1X
k=0

R(n� k) cos

�
2�(n� k)m

M

�
(8)
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while the di�erence is

(E[X2
R
(m)]� E[X2

I
(m)])(fsM ) =

M�1X
n=0

M�1X
k=0

R(n� k) cos

�
2�(n+ k)m

M

�

=
M�1X
n=0

R(0) cos

�
4�mn

M

�
+

2
M�1X
n=1

R(n)
M�1�nX
k=0

cos

�
2�(2k + n)m

M

�

E[X2
R(m)] �E[X2

I (m)] =

�2
fsM

cot

�
2�m

M

�M�1X
n=1

R(n) sin

�
2�mn

M

�
(9)

This suggests that we de�ne a new quantity which we
shall call the circular anomaly,

A(m) =
�1
fsM

M�1X
n=1

R(n) sin

�
2�mn

M

�
(10)

This will lead to

E[XR(m)XI (m)] = A(m) (11)

E[X2
R(m)]� E[X2

I (m)] = 2 cot

�
2�m

M

�
A(m) (12)

In general, it is not possible to characterize the noncircu-
lar behavior of a variable by a single real number, because
the phase of E[X2] is also important. However, under the
time stationarity assumption above, the phase is shown be-
low to be knowable a priori.
If we deal with a continuous time sequence, the above

summations will be replaced with integrals for a Fourier
series expansion. In that case the anomaly will be zero.
Therefore, the circularity is lost when the data are sam-
pled. To establish how the continuous case is a limit of the
discrete case as M increases, it is evidently necessary to
makeM=fs constant.

III. Implications of Stationary

Equations 11 and 12 show the form which the second
order moments of X(m) must have if X(m) corresponds to
a stationary data sequence. Unless the noise is white, the
circular anomaly will usually not be zero, and the second
order statistics must take a prescribed form which is not
circular.
The implications of this anomaly have evidently never

been e�ectively studied. Most of them are beyond the
scope of this paper. However, we can make a few inter-
esting observations. The real covariance matrix of the real
and imaginary components takes the form

�
S(m)
2 + cot

�
2�m
M

�
A(m) A(m)

A(m) S(m)
2 � cot

�
2�m
M

�
A(m)

�

(13)

Eigenvalues of this matrix are S(m)=2+A(m) csc(2�m=M )
and S(m)=2�A(m) csc(2�m=M ). More remarkable are the
eigenvectors of this matrix, which are

�
cos(�m=M )
sin(�m=M )

�
;

�
� sin(�m=M )
cos(�m=M )

�
(14)

In other words, they are independent of the data. If one
wished to design a diagonalizing transformation for the
real and imaginary parts, he could do so from a priori

information. The transformation will take the simple form
Y (m) = X(m) exp(�i�m=M ). Y (m) will then correspond
to a time sequence which is delayed 1=(2fs) from the orig-
inal sequence. This will, of course, maximize the di�er-
ence in magnitude between the components. The condition
number of the matrix in either case will be

S(m) + 2A(m) csc(2�m=M )

S(m) � 2A(m) csc(2�m=M )
(15)

or the reciprocal of this, depending on the sign of A(m).
This condition number is important because it indicates
the extent to which one component ofX(m) dominates the
other. For example, in the Gaussian case if the condition
number is very large, X(m)X�(m) would approximate a
chi-squared one degree of freedom variable instead of the
two degrees of freedom which would occur if the condition
number was one.
As mentioned earlier, second order circularity is some-

times associated with the requirement that E[X2] = 0.
We can easily write the value to be expected in the time
stationary case. Since

E[X2(m)] = 2A(m)(cot(2�m=M ) + i)

E[X2(m)] =
2A(m)

sin(2�m=M )
exp(i2�m=M ) (16)

A test for this phase angle could, in principle, be used as a
test for stationarity.
The signal processing implications of this are not yet

clear. The most obvious implication is that for Gaussian
noise XX� will not be an exponential variable, but rather
a sum of unequal chi-square variables. In an extreme case,
(large condition number) it would result in an e�ective loss
of half of the supposed number of degrees of freedom in
the estimator, presumably with a 1.5 dB loss in detection
performance.
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